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R E F L E C T I O N  OF  S H O C K  W A V E S  F R O M  A S O L I D  B O U N D A R Y  I N  A M I X T U R E  

OF C O N D E N S E D  M A T E R I A L S .  1. E Q U I L I B R I U M  A P P R O X I M A T I O N  

A.  A .  Zhi l in  a n d  A .  V .  F e d o r o v  UDC 532.529 

The process of reflection of shock waves (SW) from a solid wall in a two-component mixture 
of condensed materials is studied within the framework of mechanics of  heterogeneous media. 
The velocity of a reflected S W  and the values of the parameters behind its front are analytically 
determined as functions of the velocity of the incident wave and the initial parameters of the 
mixture. It is shown that the absolute value of the velocity of the reflected S W  can be greater 
than the velocity of the incident S W  in mixtures with a small content of  the light component and 
at low velocities of the incident shock wave. The nonmonotonic character of the dependence of 
pressure in the final equilibrium state behind the incident S W  on the initial volume concentration 
of particles is demonstrated. The velocity of the incident S W  is estimated for the case where 
a similar effect is also observed behind a reflected SW. It is established that, for weak shock 
waves, the dependence of the amplification factor of the reflected S W  on the initial volume 
concentration of the light component is nonrnonotonic and has a local maximum. It is noted that, 
as the velocity of the incident S W  increases, the effect of compacting of  the mixture (increase in 
concentration of the heavy component) behind the reflected SW becomes much less pronounced 
than in a passing S W. 

The problem of propagation and reflection of shock waves (SW) from a solid wall in mulitcomponent 
mixtures is of great thcoretical and practical interest and has not been studied in detail yet. Fedorov 
[[] considered problems of the SW structure in a mixture of two condensed materials in the one-velocity 
approximation with different pressures of the components of the mixture, and also in a mixture with account 
of tile difference in phase velocities and pressures in the case of an infinitely large relaxation time of tile 
volume conccntration of the heavy component of the mixture rrn 2 and a finite t ime of velocity relaxation. It is 
shown that the resultant dispersed and frozen SW structures are characterized by monotonically decreasing 
phase velocities with bow and/or  internal shock waves. Fedorov and Fedorova [2] performed a numerical and 
analytical study of the problem of reflection of a shock wave from a solid boundary in a mixture of two 
compressible media under the condition Tin2 -'-+ OZ. Thus, the study was conducted within the framework of 
tile model of mechanics of heterogeneous media with different velocities and pressures of the components, and 
the volume concentration was m2 ~ const. It was found by calculations that  the SW retains its type, being 
reflected from the solid wall in such a mixture. It should be noted that the process of equalization of pressures 
of the components of the mixture behind the SW front, i.e., the finiteness of the relaxation time rm~, was not 
taken into account in [2]. 

The mathematical  model in the more general case of a finite relaxation t ime rm 2 without constraints on 
tile materials of the components of the mixture examined was studied in [3, 4]. Within the framework of the 
proposed approach, the existence of different SW structures was shown: fully dispersed, frozen-dispersed, 
dispersed-frozen, and frozen shock waves of two-wave configuration with a monotonically decreasing or 
nonmonotonic velocity profile. Zhilin and Fedorov [5] studied the process of stabilization of steady wave 
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structures obtained in [3, 4] in a heterogeneous mixture. Their stability to finite and infinitesimal disturbances 
was also shown, which allowed the authors to solve the problem of SW initiation from stepwise initial data. 

The goal of the present paper is to study the process of reflection of different SW types obtained 
in [3, 4] from a solid wall. This problem was considered previously in mechanics of heterogeneous media in 
the case of equal pressures of the components of the mixture. Thus, Miura et al. [6] studied flows resulting 
from SW interaction with a solid wall in a dust-laden mixture in the two-velocity and two-temperature 
approximation. In the equilibrium approximation, it was proved that there are three types of transition of 
incident SW (with a frozen and dispersed structure) to reflected SW depending on the pressure difference 
on the incident SW: 1) both incident and reflected waves are frozen; 2) a frozen incident SW is reflected as 
fully dispersed; both incident and reflected shock waves are characterized by a fully dispersed structure. The 
model considered adequately describes gas mixtures and does not take into account the difference in phase 
pressures; in addition, it is assumed that the change in the volume fraction of the particles can be ignored. In 
what follows, in contrast to [2], the problem of SW reflection is studied within the framework of the model 
that takes into account relaxation of phase pressures. 

P h y s i c o m a t h e m a t i c a l  Formula t ion  of t he  P r o b l e m .  We consider a mixture of two condensed 
materials consisting of a light component, which occupies continuously the entire volume, and a heavy 
component, which is discretely distributed in the light component. An SW propagates from right to left 
in a quiescent mixture with equilibrium initial parameters. Behind the SW front, after the relaxation zone, 
the parameters of the mixture correspond to the equilibrium final state in terms of velocities and pressures 
of the components. The left boundary is a solid wall (x = 0); being reflected from this wall, the SW forms a 
new equilibrium state in the medium behind the SW front. The problem is to determine the parameters of 
the components of the mixture in the region x/> 0, t ~> 0. 

The equations that describe the flow of the mixture in dimensionless variables have the form 

Opl Oplul Op2 Op2u2 OplUl Oplu21 OP1 
O~ ~- O ~  --  O, Ot "~- O--"'-~ -- O, 0--'--~ 2F 0-""~ --  m I ~ "JF Fs, 

Op2uz Op2u  OP2 Ore2 Orn2 Omz 
0----~ + 0---~ - - m 2  -~x ( P 2 - P 1 )  O----~- - Fs, 0---[ - + u2 0x  - R, (1) 

ml  ~ -  1 - -  m 2 ,  P1 = p l / m ,  -- 1, P2 = a2(p2/m2 - fi), 

where pi, ui, P i ,  and mi are the mean density, velocity, pressure, and volume concentration of the ith 
component of the mixture, Fs = rnlp2(u2 - Ul)/rs is the Stokes force, r s = 2/5/(9~1) is the time of velocity 
relaxation under the action of the Stokes forces, R = m~rn2(P2 - P1)/rm2 is a function that describes the 
transfer of the solid phase, rm2 = 2/~z is the relaxation time of the volume concentration of the heavv 
component of the mixture, #i is the dynamic viscosity of the ith component, a = a2/al ,  fi = p22,O/pll,O, 
pi = miPii, Pii is the true density of the ith component, and ai and pii,o are the speed of sound and the true 
density of the material of the ith component of the mixture. The velocities are normalized to aa, the densities 
to p11,0, the pressures to a~p11,o, the spatial coordinate x to the radius of the solid particles r, and the time 

t to to = r / a l .  
We determined the equilibrium C~ and equilibrium-frozen Ce,l speeds of sound in the mixture 

- - 

where C = 1 - a 2 / 5  and {i = P i / P .  

The initial-boundary conditions for Eqs. (1) can be presented in the following form: 

~O = ~O0(X), Z >~ 0, t = 0; Ul = U2 ----- 0, X = 0, t >~ 0. (2)  
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The vector of the solution ~00(x) here describes a steady SW with one of the structures found in [3, 4]. Thus, 
the problem of SW reflection from a solid wall reduces to the solution of the initial-boundary problem (1), (2). 

C a l c u l a t i o n  of  t h e  P a r a m e t e r s  of  a R e f l e c t e d  SW in t h e  E q u i l i b r i u m  A p p r o x i m a t i o n .  The 
initial equilibrium state is characterized by the parameters pi = pio, ui = O, and Pi = 0 upstream of the 
incident SW front. Behind the SW front, the parameters of the mixture take the final equilibrium values 
pi = Pi,fin, ui = Ufin, and Pi = Pan. The equilibrium state behind the front of the reflected SW is described 
by the parameters pi = Pir, ui = Ur = 0, and Pi = Pr.  From the conservation laws of mass and momentum 
for tile incident and reflected SW, we have 

- p o D  = pfin(Ufin - D ) ,  Po D2 = Pfin + Pfin(Ufin -- D) 2, 

- p r D r  = pfin(Ufin - D r ) ,  Pr + P r D  2 = Pfin + Pfin(ufin - Dr) 2, 
(3) 

where D~ and D~ = D are the velocities of the incident and reflected shock waves, respectively. 
For determining D~, after some transformations, we obtain the cubic equation 

,~3 2 2 (2 C + 2ufinpfinD 2 2 - - Ce, fPf in)D r - [C 1 + pfin(C2e,f C~1) l J r U f i n P f i n  - -  U f i n P f i n  - -  - -  

-Uf inPi inD(2 C )  2 "2 2 2 2 2 - u f inp f i , (D + D]Dr 2 2 -- -- Ce , f  ) Ce , f  UfinPfin -k- pfin Ufin ( Ce, f -- C ~1 "4- UfinPfin D C e , f  ) = O, 

which has a trivial solution Dr -= D corresponding to the incident SW velocity. The remaining quadratic 
equation 

DO 2 2 2 2 2 ,-2 
rUfinPfin DrufinPfin(2 C + UfinPfinD Ce,fpfin ) C + 1 pfin(C2,f  C~I) :- 0 . . . . . . .  U f i n P f i n l ~ e ,  f 

2 has two roots: D~ = [2 - C + UfinPfinD - Ce,fPfin -4- V~]/ (2Uf inPf ln) .  The radicand ~D = ( C  - UfinPfinD + 

2 2 UfinD ) is always positive, since C < 0 and UfinD > 0. Hence, two real C2,fpfin) 2 -[- 4pfin(UfinPfinCe, f -- C~I  "4- 
values of the velocity of the reflected SW can exist. Physically meaningful is the lower branch where D~- > 0 
(it corresponds to the sign minus, since ufi, < 0). The solutions D + on the upper branch are negative. In 
what follows, the sign minus in D 7 is omitted: Dr = D~-. Figure 1 shows tile behavior of the velocity of the 
reflected SW (dashed curve Dr), relative phase velocities behind the incident SW front (dot-and-dashed curve 
ufi, - D) and ahead of the reflected SW (heavy solid curve lufi, - Drl ), and equilibrium speeds of sound 
(thin solid curves Ce,0, Ce,tin, and C~,r in the initial and final equilibrium states both behind the incident and 
reflected shock waves) versus ml0 (the incident SW velocity is D = -1.5).  

In Fig. 1, we can see a region of unstable flow (located below the assembly point A of the characteristic 
flow velocities), in which the Zempl6n theorem is invalid. In tile region above this point, the conditions of 
the ZemplSn theorem are fulfilled both for the incident and reflected SW: ]D[ > Ce,0, [ufin - DI < C d n ,  
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TABLE 1 

Equilibrium Parameters of the Mixture behind the Incident and Reflected SW 

0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.95 

0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 

-0.001 
-0.076 
-0.213 
-0.338 
-0.452 
-0.555 
-0.648 
-0.728 
-0.762 
-0.792 
-0.816 

-0.166 
-0.375 
-0.685 
-0.928 
-1.138 
- 1.326 
-1.499 
-1.662 
-1.817 
- 1.964 

0.1495 
0.167 
0.207 
0.257 
0.320 
0.400 
0.502 
0.634 
0.712 
0.800 
0.896 

0.026 
0.035 
0.055 
0.080 
0.I10 
0.151 
0.208 
0.290 
0.416 
0.624 

0.0043 
0.263 
0.688 
1.008 
1.236 
1.382 

1.4524 
1.4520 
1.426 
1.384 
1.325 

1.067 
2.332 
3.974 
5.002 
5.659 
6.048 
6.222 
6.213 
6.042 
5.719 

D = -1.5 

1.503 0.1490 
1.636 0.140 
1.714 0.145 
1.671 0.165 
1.566 0.200 
1.421 0.251 
1.247 0.329 
1.053 0.453 
0.952 0.542 
0.852 0.657 
0.755 0.807 

D = -2.5 

2.681 0.017 
2.622 0.020 
2.446 0.030 
2.271 0.042 
2.095 0.056 
1.909 0.076 
1.704 0.104 
1.470 0.146 
1.191 0.220 
0.846 0.380 

0.0086 
0.578 
1.719 
2.750 
3.615 
4.272 
4.681 
4.801 
4.740 
4.597 
4.370 

2.369 I 
5.622 I 
10.828 I 
15.186 
19.084 
22.7ool 
26.135 I 
29.449 J 
32.655 t 
35.6621 

1.504 2.003 
1.711 2.201 
1.927 2.497 
2.009 2.728 
2.018 2.924 
1.976 3.091 
1.895 3.223 
1.781 3.306 
1.714 3.324 
1.644 3.322 
1.571 3.298 

2.847 2.220 
2.997 2.411 
3.131 2.725 
3.200 3.036 
3.232 3.372 
3.234 3.754 
3.203 4.201 
3.132 4.740 
3.008 5.405 
2.809 6.236 

[U~n - Dr[ > Cr and [Dr[ < Cr for a l l  ml0 > rn.. The coordinate of the assembly point A for D = -1 .5  
corresponds to rnl0 = 0.15 and for D = -2 .5  to rnl0 -- 0.02. 

In Fig. 1, we can also see the effect of nonmonotonic behavior of the reflected SW velocity depending 
on the ratio of volume concentrations of the components of the mixture. First, at ml0 > m.,  an increase in 
the velocity of the reflected SW is observed with increasing fraction of the light component. The maximum 
value of the reflected SW velocity Dr,max = 1.714 for D = -1 .5  is reached at m* = 0.30, and, for example, 
for D = -2.5,  Dr,max = 2.681 is reached at m* = 0.05. For ml0 > m*, the velocity of the reflected SW 
decreases with increasing ml0. Numerical values of the reflected SW velocity Dr for different velocities of the 
incident shock wave D depending on the initial volume concentration of the light component of the mixture 
are presented in Table 1 for D = -1 .5  and D = -2 .5 .  Table 1 contains also the equilibrium parameters of 

the mixture utin, rnlfin, and Pfin behind the incident SW and mlr  and Pr behind the reflected SW. Note that  
there is no unstable flow region for D = -3 .3 ,  since the line of the equilibrium speed of sound Ce, which 
separates the regions of stable and unstable flows, is outside the limits of the considered interval of volume 
concentrations rnl0 E [0, 1] for the range of velocities of the incident SW [D[ > a. In addition, the effect of 
nonmonotonic behavior of the reflected SW velocity as a function of ml0 is not, observed in this range of 

velocities and volume concentrations. 
Note that  the pressure behind the reflected SW front Pfln behaves nonmonotonically with increasing 

ml0. The nature of the maximum arising in Pfin is explained using the equation of state for the mixture in 

the equilibrium state behind the incident SW front 

Pfin - Plfin 1 - mloD - 1. (4) 
rnlfi n mlfin( D - ufi,) 

Some numerical values of rnlfi n and Ufin versus rnl0 are listed in Table 1. The nonlinear dependence Pfln on 
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m]0 is the condition for existence of the pressure maximum P~n ax in the final equilibrium state behind the 
incident SW front. As the velocity of the incident SW increases, the position of p~ax shifts toward the range 
of low values of ml0 (ml0 = 0.75 for D = -1 .5 ,  ml0 = 0.64 for D = -2 .5 ,  and ml0 = 0.50 for D = -3 .3)  and 
takes the values P~n ax = 1.461, 6.239, and 12.654, respectively. 

The equilibrium pressure behind the reflected SW front Pr increases with increasing ml0, reaches the 
maximum value Pr max = 4.803 at rnl0 = 0.79 for D = -1 .5 ,  and decreases on the remaining interval of 
rot0. The reason for the appearance of nonmonotonicity of the function PT = P r ( m ] o )  is the same as in the 
above-considered case PAn = Pfin(ml0)- As the incident SW velocity increases, the maximum in Pr shifts 
toward greater ml0; for D = -2 .5 ,  the position of the maximum is outside the limits of the considered range 
of volume concentrations of the components of the mixture. 

It follows from Table 1 and Fig. 2 that the amplification factor of the reflected shock wave k = 
(PT - Po)/(PF,,  -- Po) with increasing ml0 is characterized by a nonmonotonic behavior with a local maximum 
k .m~x, which is reached at D = -1 .5  for rnl0 = 0.87. Note that this maximum is a consequence of nonmonotonic 
pressures in the final equilibrium states both behind the incident and reflected shock waves. An increase in 
the velocity of tile incident shock wave shifts the maximum of the amplification factor toward greater volume 
concentrations. The critical situation in terms of k max is observed at a certain D and ml0 ~ 1, after which 
a further increase in D, for example, to D = -2 .5  (see Table 1 and Fig. 2), makes the function k monotonic 
over the entire interval of mz0 from 0 to 1. 

In applications, it is often important  to evaluate the level of compacting of a two-component mixture 
under the action of an SW. We determined the volume concentration of the heavy component of the mixture 
behind the incident SW m2fi n (solid curves in Fig. 3) and reflected SW m2T (dashed curves) as a function of the 
incident SW velocity D for different m2o. As tile incident SW velocity increases, the volume concentration of 
tile heavy component  dramatically increases downstream both behind the incident and reflected shock waves, 
i.e., the light material  is displaced and the heavy material is compacted in both cases. We note that there 
are two states with m2fin = m2T. The first equilibrium point is located on the line of the equilibrium speed 
of sound Ce (point A in Fig. 1) if the SW propagates with the speed of sound. The second equilibrium state 
in terms of volume concentrations behind the incident and reflected shock waves is reached asymptotically as 
D ~ - e c ,  as seen from Fig. 3. The second equilibrium point m~ takes the values m~ = 0.990 at m20 = 0.~. 
m{ = 0.911 at rn20 = 0.3, and m~ = 0.726 at m20 = 0.1. The greatest difference in volume concentrations of 
the components behind the incident and reflected SW is reached in the region adjacent, to the first equilibrium 
point (for example,  at m20 = 0.8, 0.3, and 0.1 for D = -1.792,  -1 .744,  and -2 .336,  respectively). 

Thus, we have obtained analytical asymptotic estimates of the parameters of the reflected SW in 
a mixture of two condensed materials, which show that, depending on the fraction of the first (second) 
component, the absolute value of the reflected SW velocity can be greater or smaller than the incident SW 

velocity. 
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